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Abstract–In this paper, we present a generalization of the

finite difference time domain (FDTD) algorithm adapted to

nonorthogonai computational grids and apply it to the investi-

gation of three dimensional discontinuity problems. The non-

orthogonal FDTD uses a body-fitted grid for meshing up the

computation domain and, consequently, is able to model the
problem geometry with better accuracy than is possible with

the staircasing approach conventionally employed in the FDTD

algorithm. In addition to extending the FDTD algorithm to
nonorthogonal grids, we also derive the stability conditions for
the nonorthogonal FDTD algorithm in two and three dimen-
sions. Numerical results including an H-plane waveguide junc-

tion, a circular waveguide with a circular iris, a circular wave-
guide with a rectangular iris, and a microstrip bend

discontinuity, are presented to validate the current nonor-

thogonal FDTD approach.

1. INTRODUCTION

T HE MICROWAVE discontinuity problems in three

dimensions often involve complicated shapes. In us-

ing the conventional FDTD algorithm [1] to model such

problems, a staircase mesh is often employed. This ap-

proach suffers from the disadvantage that an accurate de-

scription of a non-Cartesian geometry usually requires a

very fine mesh and, consequently, a very small time step

in the FDTD algorithm.

To circumvent this problem, Holland [2] has general-

ized the FDTD algorithm to general nonorthogonal grids.

Using the nonorthogonal FDTD mesh enables one to con-

form to the shape of a three-dimensional structure and,

therefore, avoid the problem of a very small time step

resulting from an overly dense mesh. In this paper, we

first modify Holland’s formulation in order to improve its

computational efficiency, and then apply it to study some

three-dimensional discontinuity problems. Additionally,
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we perform the stability analysis of the nonorthogonal

FDTD algorithm in two and three dimensions, and derive

an upper bound for the time step that guarantees stable

numerical solutions. The study of several microwave

junctions, viz., an H-plane waveguide discontinuity, a

circular waveguide with a circular iris, a circular wave-

guide with a rectangular iris, and a microstrip bend dis-

continuity, are presented to validate the current approach.

This paper is organized as follows. Section II presents

the formulation which extends the FDTD algorithm to

nonorthogonal grids. The corresponding stability anal-

yses for two- and three-dimensional geometries are pre-

sented in Section III. Several numerical results are in-

cluded in Section IV, and brief conclusions are given in

Section V.

II. THREE-DIMENSIONAL NONORTHOGONAL FDTD

ALGORITHM

The formulation of the FDTD algorithm in nonorthog-

onal computational grids has been presented by Holland

[2] and, in [3], Fusco has successfully used this approach

to solve two-dimensional scattering problems. In this pa-

per, we reformulate the nonorthogonal FDTD algorithm

using the covariant and contravariant components of the

electric and magnetic fields as the unknown variables.

This modification results in a more efficient time march-

ing procedure than that presented in [2].

A nonorthogonal coordinate system (u 1, u z, u 3, in three

dimensions may be characterized [4] by a set of vectors

Ai (see Fig. 1) where

From Fig. 1, we see that the bases Ai are vectors defined

by the edges of the cell. According to Fig. 1, we can also

define a dual bases (reciprocal bases) 1“ as follows

A3=A1XA2

~

(2)
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Fig. 1. Reciprocal basis vectors for the nonorthogonal coordinate system.

where & is the volume enclosed by the unit cell. A dual

basis vector, say Ai, points in the direction normal to the

face i, which is a quadrilateral area spamned by Aj and Ak
(i, j, k are cyclical indices). Furthermore, the dual bases

Ai’s and the original bases Ai’s satisfy the reciprocal re-

lationship:

Ai. Aj=& {j (3)

where 6U is the usual Kronecker delta. An arbitrary vector

can be written in two-forms expressed by these two bases.

For example, the electric field ~, can be expressed in

terms of these two bases as

~ = ~ AiEl (4)
1

Here, the coefficients Ei and Ei are called the contra-

variant and co~ariant components [4], respectively, of the

electric field E.
The physical meanings of the covariant and contravari-

ant components will now be given. We first use the sec-

ond equation in (4) to Qnd the jfow of the electric field

along the edge i, i.e., E s Ai. From the reciprocal rela-

tionship in (3), we obtain

(5)

We therefore conclude from (5) :hat the covariant com-
ponent Ei represents the jkn-v of E along the edge i. Sim-

ilarly, by taking the inner product of the first equation in

(4) with the dual basis Ai, and using th~e reciprocal rela-

tionship in (3), we get

()~“Ai= ~EjAj “Ai=Ei (6)
J

From (2) and (6), the contravariant component E’ is seen

to be the total flux of the electric field passing through

face i, divided by the volume &.

To extend the FDTD algorithm to nonorthogonal grids,

we need to approximate Maxwell’s equations in terms of

the contravariant and covariant components. To this end,

we start from the source-free, integral form of Maxwell’s

equations, for isotropic media, given below:

The left hand sides of (7) represent the time rates of

change of the electric and the magnetic flux through a sur-

face Q, whereas the right hand sides of (7) give the cir-

culations of the electric and magnetic fields along the cor-

responding closed boundary MI. From above, we can

obtain a finite difference approximation of the Faraday’s

law:

E 1(1, J, K)
It+l

-qH3(z,J+;>K)=E1(Z, J, K)” +6&

-H36J-lK)-H’k9JK+k)

(8)

The other two components, E2 and E3, can be derived

simply by index permutations. Likewise, the finite differ-

ence forms of the Ampere’s law read

H*(Z, J, K)’’+ 1/2

= H’(1, J, K)’’- 112 –
fi[E3~7+9

-E3(I,J-;,K) -E,(I,J>K+;)

+E2(z,J,K-;)~. (9)

Again, the index permutations are employed to obtain H’

and H3.

It is worthwhile mentioning here that the ~se of t$e con-

travariant and covariant components of the E and H fields
in the finite difference forms is what distinguishes our for-

mulation from that of Holland [2]. An important advan-

tage of the present approach is that (8) and (9) have ex-

actly the same form as the conventional cartesian FDTD

algorithm.

As a final step in our formulation, we need to convert

the contravariant components of ~ into its covariant com-
ponents, & order to calculate the contravariant compo-

nents of H, and vice versa. This can be accomplished by

noting that the original bases Ai are related to the dual

bases through the metric tensor gv [41, according to
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Thus, the cowmiant components of F, for instance, Hi,

can be obtained from the contravariant components of ~

as follows:

H, = ~ g,] HJ (11)
J

By averaging the neighboring values, we have the finite

difference approximation of (1 1). For example, the co-

variant component H, can be written as

HI (1, J, K)

[( )=gll H1(Z, J, K)+~ FZ2Z+; ,J-; ,K

( )
+H%; ,J-; ,K

( )
+H2Z+; ,J+; ,K

( )1+H21–; ,J+; ,K

[(
+~H3Z, +;, J,K–:

)

(
+H3Z–; ,J, K–;

)

(
+H3Z+; ,J, K+;

)

( )1+H3Z–; ,J, K+; . (12)

Similar expressions can b~ obt~ined for the other covari-

ant components of either E or H fields.

Equation (12) represents the only additional computa-

tion required in the present formulation over and above

that in the cafiesian form of the FDTD algorithm. There-

fore, the number of operations in the nonorthogonal

FDTD is roughly three times that of cartesian FDTD al-

gorithm, provided that the same number of mesh points

are used. Of course, as pointed out earlier, the primary

motivation for using the nonorthogonal algorithm is to re-

duce the number of mesh points substantially as compared

to the uniform cartesian mesh.

III. STABILITY ANALYSIS

For a numerical algorithm based upon the finite differ-

ence approximation to converge, the necessa~ and suffi-

cient condition is that the scheme must both be consistent

as well as stable [5]. The consistency condition, which is

reflected in the Taylor expansions of replacing the differ-

ential operators with difference operators, requires that the

local truncation error approaches zero as the cell size h -+

O. Consequently, to assure the convergence of the nu-

merical procedure presented in this paper, we only need

to prove that it is stable for the chosen time step. There-

fore, in this section, we derive the stability conditions for

the nonorthogonal FDTD algorithm in two and three di-

mensions. To derive the stability conditions, we appeal

to the causality consideration for the two-dimensional

case, and employ a more rigorous mathematical treatment

for the three-dimensional case.

A. Two-Dimensional Case

Fig. 2 shows a typical non-Cartesian cell in two di-

mensions, where k represents the closest distance be-

tween two lattice planes in this non-Cartesian lattice.

Since energy can not propagate faster than the speed of

light, the law of causality requires that the time step At,

in the non-orthogonal FDTD algorithm, be less than the

shortest travel time h/c for the wave between the lattice

planes. However, from Fig. 2, we see that

& &
h=

~(A1 – AZ) “ (Al – AZ) = x/g,, + g22 – 2g12”

(13)

In two dimensions, & reduces to the area of the cell.

Consequently, the necessary stability criterion is obtained

as

( &At<! ) (14)
c J&’11 + g22 – %12 “

This condition was first provided by Fusco [3]. Unfortu-

nately, however, there appears to be a typographical error

in his formula in [3].

In the numerical implementation, the r.h.s. of (14) is

evaluated at every grid point, the smallest value is then

used as the upper bound for choosing the time step in the

nonorthogonal FDTD algorithm.

B. Three-Dimensional Case

To derive the stability condition for three-dimensional

nonorthogonal FDTD algorithm, we start from the vector

wave equation:

–1 az~
vxvx E=— —

c’ at2”
(15)

As is well known [6], an arbitrary wave can be expanded
in terms of a spectrum of plane waves which can also be

viewed as the eigenmodes of the wave equation. Next, we

argue that a time domain procedure must be stable for an

arbitrary plane wave. Consequently, we let

E(u’,U2,U3;t) = ~(f) exp (–jZ “ 7)

= ~(t) exp (–j[klui + k2uz + k3u3])

(16)

where

(17)
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Fig. 2. Typical two-dimensional non-(;arteslan cell.

In a general nonorthogonal coordinate system, the oper-

ator V becomes

V= A1$+A2$+Aj~
au 3

(18)

Substituting (16) into (18), performing, the central differ-

encing for each ‘of the spatial derivative and making use

of A u’ = 1, the V operator can be repllaced symbolically

by

(19)

Furthermore, any plane wave with a representation given

in (16) satisfies the divergence-free condition. Therefore,

(15) reduces to

Defining a solution growth factor A =

stituting (19) into (20), we obtain

-4[’xA’sinPiu’)1)“N’”
lh2–2A+l+.— E,

C2 hAt2

Solving (21) for h we get

(20)

En+ ‘/s?”, and sub-

sin[4!$#2])]jj

A=(l–2s2At2) ~2s At~2At2– 1

where

(21)

3

(

s2=C2 ~ A1.AmSin
A (k] U’) sin A (k,. U’n)——

2 )2“
(22)

1=1

m=l

The numerical scheme would be stable if the growth

factor IAl s 1. From (22) we see that this condition is

satisfied if and only if

s2At2s 1. (23)

Furthermore, as pointed out earlier, the above condition

must hold for an arbitrary plane wave This can be as-

sured by noting that for all possible waves, we have

3

where

g,m=A1. Am.

Hence, to satisfy the stability condition

spatial modes in the lattice, we set

1
At s / 3.
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(24)

(23) for all the

(25)

dc ,;, g,m

In=l

In an attempt 10 extend the stability condition to a more

general form, and hopefully provide more insights, we

will show that the square-root term in (25) is related to

the norm of the V operator in the nonorthogonal FDTD

algorithm. Typically the norm of an operator, for instance

V, is defined as

,Ivll=s:pw (26)

where II “ II is’ the usual Lz norm, W iS anY admissible

function in the solution process, and sup represents the
upper-bound. In particular, since plane waves form a

complete set of basis functions, therefore W in (26) can

be limited to only plane waves, i.e.,

Ilvll = sup Ilvwll,
k~kz.k~

W = exp (–j[klu’ + k~uz + k3u31) (27)

Substituting (19) into (27), the result is

\lvll=2sup
k~kz!il

. 2

r-

i g’m .
/=1
??1= I

Using (28), we rewrite (25) as

2

‘t< Cllvll”

(28)

(29)

Note that (29) is based on the assumption that central-

differencing is ennployed for both time and space deriva-

tives. Finally, we demonstrate that (29) reduces to the

familiar forms in a Cartesian system:

Two-Dimensional Case:

Ilvl?ll
IIVll = s~P ,,E,,
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Three-Dimensional Case:

l\vEll
“v“ =‘;p IIEII

‘2JzzzG’

IV. NUMERICAL RESULTS

(30)

Several numerical examples are presented in this

section to demonstrate the validity of the non-orthogonal

FDTD algorithm. The problems considered are:

1) H-plane waveguide junction; 2) circular waveguide

with a circular iris; 3) circular waveguide with a rectan-

gular iris; and, 4) 450 microstrip bend discontinuity. The

numerical results of Section IV-A–D are for the steady-

state responses which have been derived by using a si-

nusoidal signal as the excitation. However, in Section

IV-D the reflection coefficient of the discontinuity is ob-

tained from time domain results of a Gaussian pulse ex-

citation.

A. H-Plane Waveguide Junction

Figure 3 shows the cross-section of an H-plane wave-

guide junction. The height of the junction is uniform and,

therefore, this is essentially a two-dimensional problem.

By using the three-dimensional non-orthogonal FDTD al-

gorithm to model it, we can compare our results with an

existing two-dimensional FEM approach [8]. Also, shown

in Fig. 3 is a plane-cut of the nonorthogonal mesh that is

employed for the current analysis. Note that this problem

is solved without using any absorbing boundary condi-

tions; consequently, the problem domain has to be trun-

cated very far away from the discontinuity region as can
be seen from the figure. The computed steady state field

distribution along the length of the discontinuity region is

plotted in Fig. 4, where the unit of the distance is arbi-

trary. In Fig. 4, we also show the comparison of the cur-

rent results with the ones obtained from the frequency do-

main finite-element analysis [8]. Very close agreement

between the two results is observed.

B. Circular Waveguide with a Circular Iris

Fig. 5 shows a circular waveguide with a circular iris.

The waveguide is filled with an isotropic dielectric ma-

terial of dielectric constant 9.7, except the thin iris region

which is filled with air. This problem has been analyzed

using two techniques, viz., the mode matching method

and the nonorthogonal FDTD approach. In the nonor-

thogonal FDTD approach, the cross-section of the mesh

that is used is shown in Fig. 6. Since the problem is sym-

metric, only a quarter of the geometry is modeled. The

1,6667X

0,8333?. s
%
3

Fig, 3. Nonorthogonal mesh for an H-plane waveguide junction

1

0,5

e-:

am 0
s
4

-0.5

-1

Fig. 4.

o 5 10 15 20 25

distance

Field distribution along the taper region.

Fig. 6. Cross-section of the nonorthogonal mesh for the iris discontinuity
problem shown in Fig, 5.

three-dimensional mesh is generated by extruding the two-

dimensional mesh (see Fig. 6) in the third dimension. By

using the first-order ABC [9], we are able to bring the

artificial truncation boundaries to distances as close as 1X

away from the iris for a frequency of 6 GHz. The com-

puted reflection and transmission coefficients derived from

these two approaches are shown in Figs. 7 and 8. Good

agreement between the two results confirm the validity of

the nonorthogonal FDTD approach.

C. Circular Waveguide with a Rectangular Iris

The mesh used to investigate a circular dielectric-loaded

waveguide with a thin rectangular iris is shown in Fig. 9.
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Fig. 7. Comparison of the numerical results for the reflection coefficient

for the circular iris discontinuity computed by using the mode matching
and the nonorthogonal FDTD algorithm.
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Fig. 8. Comparison of the numerical results for the transmission coeffi-
cient for the circnlar iris discontinuity problem.

Fig. 9. Cross-sectional mesh for a circular waveguide with a rectangular
ms.

The dielectric constant of the dielectric is 9.7, the radius

of the waveguide is 6.35 mm, and the tiimensions of the

aperature is 1.3716 mm X 9.1948 mm. Again, this two-

dimensional mesh is extrapolated into the third dimension

to generate the required three-dimensional computational

grid. The use of ABC again allows us to bring the trun~

cation boundaries to 1A away from the iris at 6 GHz. The

computed reflection and transmission coefficients are

plotted in Figs. 10 and 11, respectively. It has not, been

possible to compare these results with others owing to the

unavailability of published results for this geometry in the

literature.

1

Freq (GHz)

Fig. 10. Computed reflection coefficient for the rectangular iris problem

using the nonorthogonal FDTD algorithm.

Fig. 11.

Eizl

-4, !5 5, 5.5 6 6.5 7
Freq (GHz)

Computed transmission coefficient for the rectangular iris discon-
tinuity.

I
Fig. 12. A 45° microstrip bend discontinuity.

D. 450 Microstrip Bend Discontinuity

Another problem investigated by using the nonorthog-

onal time domain approach is the 450 microstrip bend

shown in Fig. 12, which is conveniently analyzed using

the nonorthogonal mesh approach that avoids staircasing.

Fig. 13 displays the return loss versus frequency curves

obtained by using: 1) the nonorthogonal FDTD approach;

2) the microwave computer-aided design package

TOUCHSTONE; 3) a Iossless T circuit model for the dis-

continuity; and 4) HP8510B network analyzer. We note

that below 6 GHz, which is believed to be the upper limit

for accurate measurements because of the connectors

used, the agreement between the nonorthogonal FDTD

and the measured results is good.
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024681012 14

Freq.m.~ (GHz)

Fig. 13. Numerical results for three models versus experiment for the 450
bend,

V. CONCLUSION AND DISCUSSION

In this paper, we have reformulated the nonorthogonal

FDTD algorithm, using the covariant and contravariant

components of the electric and magnetic fields as the un-

known variables, to result in a more efficient time march-

ing procedure than that presented in [2]. Additionally, we

have performed the stability analyses of the nonorthog-

onal FDTD algorithm in two and three dimensions, and

derived an upper bound for the time step that guarantees

stable numerical solutions. Finally, the modified nonor-

thogonal FDTD algorithm has been applied to study sev-

eral waveguide discontinuities, viz., an H-plane wave-

guide junction, a circular waveguide with a circular iris,

a circular waveguide with a rectangular iris, and a 450

micro strip bend. The computed results compared favor-

ably with previously available techniques and, therefore,

validated the present approach.
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