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Modeling Three-Dimensional Discontinuities in
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Abstract—In this paper, we present a generalization of the
finite difference time domain (FDTD) algorithm adapted to
nonorthogonal computational grids and apply it to the investi-
gation of three dimensional discontinuity problems. The non-
orthogonal FDTD uses a body-fitted grid for meshing up the
computation domain and, consequently, is able to model the
problem geometry with better accuracy than is possible with
the staircasing approach conventionally employed in the FDTD
algorithm. In addition to extending the FDTD algorithm to
nonorthogonal grids, we also derive the stability conditions for
the nonorthogonal FDTD algorithm in two and three dimen-
sions. Numerical results including an H-plane waveguide junc-
tion, a circular waveguide with a circular iris, a circular wave-
guide with a rectangular iris, and a microstrip bend
discontinuity, are presented to validate the current nonor-
thogonal FDTD approach.

1. INTRODUCTION

HE MICROWAVE discontinuity problems in three

dimensions often involve complicated shapes. In us-
ing the conventional FDTD algorithm [1] to model such
problems, a staircased mesh is often employed. This ap-
proach suffers from the disadvantage that an accurate de-
scription of a non-Cartesian geometry usually requires a
very fine mesh and, consequently, a very small time step
in the FDTD algorithm.

To circumvent this problem, Holland [2] has general-
ized the FDTD algorithm to general nonorthogonal grids.
Using the nonorthogonal FDTD mesh enables one to con-
form to the shape of a three-dimensional structure and,
therefore, avoid the problem of a very small time step
resulting from an overly dense mesh. In this paper, we
first modify Holland’s formulation in order to improve its
computational efficiency, and then apply it to study some
three-dimensional discontinuity problems. Additionally,
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we perform the stability analysis of the nonorthogonal
FDTD algorithm in two and three dimensions, and derive
an upper bound for the time step that guarantees stable
numerical solutions. The study of several microwave
junctions, viz., an H-plane waveguide discontinuity, a
circular waveguide with a circular iris, a circular wave-
guide with a rectangular iris, and a microstrip bend dis-
continuity, are presented to validate the current approach.

This paper is organized as follows. Section II presents
the formulation which extends the FDTD algorithm to
nonorthogonal grids. The corresponding stability anal-
yses for two- and three-dimensional geometries are pre-
sented in Section III. Several numerical results are in-
cluded in Section IV, and brief conclusions are given in
Section V.

II. THREE-DIMENSIONAL NONORTHOGONAL FDTD
ALGORITHM

The formulation of the FDTD algorithm in nonorthog-
onal computational grids has been presented by Holland
[2] and, in [3], Fusco has successfully used this approach
to solve two-dimensional scattering problems. In this pa-
per, we reformulate the nonorthogonal FDTD algorithm
using the covariant and contravariant components of the
electric and magnetic fields as the unknown variables.
This modification results in a more efficient time march-
ing procedure than that presented in {2].

A nonorthogonal coordinate system (u', uz, u? ) in three
dimensions may be characterized [4] by a set of vectors
A; (see Fig. 1) where

3 3
d¥ = 2 —du' = 2 Adu' (1)
From Fig. 1. we see that the bases A; are vectors defined

by the edges of the cell. According to Fig. 1, we can also
define a dual bases (reciprocal bases) A" as follows

A, X A
Al =223
Vg
Ay X A
AZ: 3 1
Vg
A3:A1><A2
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Fig. 1. Reciprocal basis vectors for the nonorthogonal coordinate system.

where ~/§ is the volume enclosed by the unit cell. A dual
basis vector, say A;, points in the direction normal to the
face i, which is a quadrilateral area spanned by A; and A,
(i, j, k are cyclical indices). Furthermore, the dual bases
A”s and the original bases A;’s satisfy the reciprocal re-
lationship:

A A= ¢y 3)

where §;; is the usual Kronecker delta. An arbitrary vector
can be written in two-forms expressed by these two bases.
For example, the electric field E, can be expressed in
terms of these two bases as

—

E =2 EA;
E = 2 A'E, @

Here, the coefficients E' and E; are called the contra-
variant and covariant components [4], respectively, of the
electric field E.

The physical meanings of the covariant and contravari-
ant components will now be given. We first use the sec-
ond equation in (4) to find the flow of the electric field
along the edge i, i.e., E + A;. From the reciprocal rela-
tionship in (3), we obtain

E'Aiz <2A1E}> 'Ai=E,' (5)
J

We therefore conclude from (5) that the covariant com-
ponent E; represents the flow of E along the edge i. Sim-
ilarly, by taking the inner product of the first equation in
(4) with the dual basis A°, and using the reciprocal rela-
tionship in (3), we get

E-A= <Z EfAj> A= E (6)
J

From (2) and (6), the contravariant component E' is seen
to be the total flux of the electric field passing through
face i, divided by the volume «/§

To extend the FDTD algorithm to nonorthogonal grids,
we need to approximate Maxwell’s equations in terms of

the contravariant and covariant components. To this end,
we start from the source-free, integral form of Maxwell’s
equations, for isotropic media, given below:

| S’ o & o

- H = - dl
dar Jo # da o0 E-d
iSi-m=§ H-dl %)
ot Ja a0

The left hand sides of (7) represent the time rates of
change of the electric and the magnetic flux through a sur-
face Q, whereas the right hand sides of (7) give the cir-
culations of the electric and magnetic fields along the cor-
responding closed boundary Q. From above, we can
obtain a finite difference approximation of the Faraday’s
law:

El(I, J, K)Il+l
At 1
EUJK)+€IP%GJ+2K>

1 ‘ 1
-HI,J -, K|~ ,J, K + =
(1o -3 k) - w104 5)

1 n+1/2
+mQLK—Eﬂ (8

The other two components, E* and E*, can be derived
simply by index permutations. Likewise, the finite differ-
ence forms of the Ampere’s law read

At 1
=£ﬂLLK"””———[EQJ+—J§
( ) ﬂ\/; 3 )

1 1
BT -2 K) - E(LJ K+
E3<I9 2aK> 2<3Js 2>

N\l ‘
+&@LK-EH. )]

Again, the index permutations are employed to obtain H 2
and H>.

It is worthwhile mentioning here that the use of the con-
travariant and covariant components of the E and H fields
in the finite difference forms is what distinguishes our for-
mulation from that of Holland [2]. An important advan-
tage of the present approach is that (8) and (9) have ex-
actly the same form as the conventional caﬂes1an FDTD
algorithm.

As a final step in our formulat_i'on, we need to convert
the contravariant components of E into its covariant com-
ponents, in order to calculate the contravariant compo-
nents of H, and vice versa. This can be accomplished by
noting that the original bases A; are related to the dual
bases through the metric tensor g; [4], according to

HI(I, J, K)n+l/2

A = 2gAl g = A A (10)
J
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Thus, the covariant components of H, for instance, H;,

can be obtained from the contravariant components of H
as follows:

H=2gH (11)
J

By averaging the neighboring values, we have the finite
difference approximation of (11). For example, the co-
variant component H, can be written as

HI(I’ J7 K)

g2 2 1 1
=g H'U,J,K) + = |H} (I +=,]—=,K
guH U, J, K) 4{ < 2 2 )

1
2
1
+H3<1+%,J,K+—>
1
2

+
T,
/:\
|

(12)

Similar expressions can be obtained for the other covari-
ant components of either E or H fields.

Equation (12) represents the only additional computa-
tion required in the present formulation over and above
that in the cartesian form of the FDTD algorithm. There-
fore, the number of operations in the nonorthogonal
FDTD is roughly three times that of cartesian FDTD al-
gorithm, provided that the same number of mesh points
are used. Of course, as pointed out earlier, the primary
motivation for using the nonorthogonal algorithm is to re-
duce the number of mesh points substantially as compared
to the uniform cartesian mesh.

III. STABILITY ANALYSIS

For a numerical algorithm based upon the finite differ-
ence approximation to converge, the necessary and suffi-
cient condition is that the scheme must both be consistent
as well as stable [5]. The consistency condition, which is
reflected in the Taylor expansions of replacing the differ-
ential operators with difference operators, requires that the
local truncation error approaches zero as the cell size & —
0. Consequently, to assure the convergence of the nu-
merical procedure presented in this paper, we only need
to prove that it is stable for the chosen time step. There-

fore, in this section, we derive the stability conditions for
the nonorthogonal FDTD algorithm in two and three di-
mensions. To derive the stability conditions, we appeal
to the causality consideration for the two-dimensional
case, and employ a more rigorous mathematical treatment
for the three-dimensional case.

A. Two-Dimensional Case

Fig. 2 shows a typical non-Cartesian cell in two di-
mensions, where 2 represents the closest distance be-
tween two lattice planes in this non-Cartesian lattice.
Since energy can not propagate faster than the speed of
light, the law of causality requires that the time step At,
in the non-orthogonal FDTD algorithm, be less than the
shortest travel time % /¢ for the wave between the lattice
planes. However, from Fig. 2, we see that

- Vg ~ Vg
VA - Ay - (A1. ~A) g+ gn — 28
(13)

In two dimensions, \/:g— reduces to the area of the cell.
Consequently, the necessary stability criterion is obtained

as
()
Ar < - .
¢ \Ng + 8» — 281

This condition was first provided by Fusco [3]. Unfortu-
nately, however, there appears to be a typographical error
in his formula in [3].

In the numerical implementation, the r.h.s. of (14) is
evaluated at every grid point, the smallest value is then
used as the upper bound for choosing the time step in the
nonorthogonal FDTD algorithm.

(14)

B. Three-Dimensional Case

To derive the stability condition for three-dimensional
nonorthogonal FDTD algorithm, we start from the vector
wave equation:

(15)

As is well known [6], an arbitrary wave can be expanded
in terms of a spectrum of plane waves which can also be
viewed as the eigenmodes of the wave equation. Next, we
argue that a time domain procedure must be stable for an
arbitrary plane wave. Consequently, we let

E(u', ul, u 0 g(z‘) exp (—jl? - F)

i

&) exp (—jlkyu' + kyu® + kyu))
(16)

i

where

17)
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Fig. 2. Typical two-dimensional non-Cartesian cell.

In a general nonorthogonal coordinate system, the oper-
ator V becomes

0 0 0
v = Al 2 2 0, 43 %
u' +A 6u2+ 4 au’

(18)
Substituting (16) into (18), performing the central differ-
encing for each of the spatial derivative and making use
of Au' = 1, the V operator can be replaced symbolically

by .
V= -2 2 <A" sin [A%”—)D

Furthermore, any plane wave with a representation given
in (16) satisfies the divergence-free condition. Therefore,
(15) reduces to

(19)

.D'”

- 1 9%
V- VYE=—
( ) c? or

Defining a solution growth factor A = E"+! /E", and sub-
stituting (19) into (20), we obtain

—4{EIJ<A’ sin [A—%@D Y <A’" sin [—A—(%”—”?)D} E

TN =2V +1 -

= ATTNAL E. 21

(20)

3]

Solving (21) for A we get
A= - 258 A1) + 2sAr«f2Ar -1

where

3
s? = ¢ 2, <A’ - A™ sin

S1
I=1 2 2
m=1

A@M)hmmwv )

The numerical scheme would be stable if the growth
factor |[A\| =< 1. From (22) we see that this condition is
satisfied if and only if

s2 A < 1. (23)

" Furthermore, as pointed out earlier, the above condition
must hold for an arbitrary plane wave. This can be as-
sured by noting that for all possible waves, we have

3
st=ce? 2 E™

I=1

m=1

where
gim = Al : Am

Hence, to satisfy the stability condition (23) for all the
spatial modes in the lattice, we set

(24)

25

In an attempt to extend the stability condition to a more
general form, and hopefully provide more insights, we
will show that the square-root term in (25) is related to
the norm of the V operator in the nonorthogonal FDTD
algorithm. Typically the norm of an operator, for instance
V., is defined as

Ivwil

v = sup T

(26)

where || - | is the usual L, norm, W is any admissible
function in the solution process, and sup represents the
upper-bound. In particular, since plane waves form a
complete set of basis functions, therefore W in (26) can
be limited to only plane waves, i.e.,

Ivil = sup IV,

kik2 k3

W = exp (—jlkiu' + kou® + ksu’]) 27

Substituting (19) into (27), the result is

A" si A[klul] sin .A_Llfi"uﬂ
sin ) 2

(28)

VI =2 sup
kikaks

\/Z A -
=1
m=1

Using (28), we rewrite (25) as

2
At < ——, 29
VT @)

Note that (29) is based on the assumption that central-
differencing is employed for both time and space deriva-
tives. Finally, we demonstrate that (29) reduces to the

familiar forms in a Cartesian system:
Two-Dimensional Case:

IIVFH
1V1 = sup Sy
1 1 1
ety T UM E T
@ @y
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Three-Dimensional Case:

IVE|

[Vl = sup ——
2 E]

1 | 1
? \[Ax)z ay fay
1

C\[l + 1 n 1
(Ax* Ay’ (A

IV. NUMERICAL RESULTS

IA

(30)

Several numerical examples are presented in this
section to demonstrate the validity of the non-orthogonal

FDTD algorithm. The problems considered are:
~ 1) H-plane waveguide junction; 2) circular waveguide
with a circular iris; 3) circular waveguide with a rectan-
gular iris; and, 4) 45° microstrip bend discontinuity. The
numerical results of Section IV-A-D are for the steady-
state responses which have been derived by using a si-
nusoidal signal as the excitation. However, in Section
IV-D the reflection coefficient of the discontinuity is ob-
tained from time domain results of a Gaussian pulse ex-
citation.

A. H-Plane Waveguide Junction

Figure 3 shows the cross-section of an H-plane wave-
guide junction. The height of the junction is uniform and,
therefore, this is essentially a two-dimensional problem.
By using the three-dimensional non-orthogonal FDTD al-
gorithm to model it, we can compare our results with an
existing two-dimensional FEM approach [8]. Also, shown
in Fig. 3 is a plane-cut of the nonorthogonal mesh that is
employed for the current analysis. Note that this problem
is solved without using any absorbing boundary condi-
tions; consequently, the problem domain has to be trun-
cated very far away from the discontinuity region as can
be seen from the figure. The computed steady state field
distribution along the length, of the discontinuity region is
plotted in Fig. 4, where the unit of the distance is arbi-
trary. In Fig. 4, we also show the comparison of the cur-
rent results with the ones obtained from the frequency do-
main finite-element analysis [8]. Very close agreement
between the two results is observed.

B. Circular Waveguide with a Circular Iris

Fig. 5 shows a circular waveguide with a circular iris.
The waveguide is filled with an isotropic dielectric ma-
terial of dielectric constant 9.7, except the thin iris region
which is filled with air. This problem has been analyzed
using two techniques, viz., the mode matching method
and the nonorthogonal FDTD approach. In the nonor-
thogonal FDTD approach, the cross-section of the mesh
that is used is shown in Fig. 6. Since the problem is sym-
metric, only a quarter of the geometry is modeled. The

16667

0.8333%

Fig. 3. Nonorthogonal mesh for an H-plane waveguide junction.

FEM
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Fig. 4. Field distribution along the taper region.

Vz2

iz
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Fig. 6. Cross-section of the nonorthogonal mesh for the iris discontinuity
problem shown in Fig. 5.

three-dimensional mesh is generated by extruding the two-
dimensional mesh (see Fig. 6) in the third dimension. By
using the first-order ABC [9], we are able to bring the
artificial truncation boundaries to distances as close as 1A
away from the iris for a frequency of 6 GHz. The com-
puted reflection and transmission. coefficients derived from
these two approaches are shown in Figs. 7 and 8. Good
agreement between the two results confirm the validity of
the nonorthogonal FDTD approach.

C. Circular Waveguide with a Rectangular Iris

The mesh used to investigate a circular dielectric-loaded
waveguide with a thin rectangular iris is shown in Fig. 9.
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Fig. 7. Comparison of the numerical results for the reflection coeflicient
for the circular iris dioscontinuity computed by using the mode matching
and the nonorthogonal FDTD algorithm.

T
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Fig. 8. Comparison of the numerical results for the transmission coeffi-
cient for the circular iris discontinuity problem:
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Fig. 9. Cross-sectional mesh for a circular waveguide with a rectangular
iris.

The dielectric constant of the dielectric is 9.7, the radius
of the waveguide is 6.35 mm, and the dimensions of the
aperature is 1.3716 mm X 9.1948 mm. Again, this two-
dimensional mesh is extrapolated into the third dimension
to generate the required three-dimensional comiputational

grid. The use of ABC again allows us to bring the trun-

cation boundaries to 1\ away from the iris at 6 GHz. The
computed reflection and transmission coefficients are
plotted in Figs. 10 and 11, respectively. It has not been
possible to compare these results with others owing to the
unavailability of published results for this geometry in the
literature.
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Fig. 10. Computed reflection coefficient for the rectangular iris problem
using the nonorthogonal FDTD algorithm.

0 I SNV S |
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Fig. 11. Computed transmission coefficient for the rectangular iris discon-
tinuity.

Fig. 12. -A 45° microstrip bend discontinuity.

D. 45° Microstrip Bend Discontinuity

Another problem investigated by using the nonorthog-
onal time domain approach is the 45° microstrip bend
shown in Fig. 12, which is conveniently analyzed using
the nonorthogonal mesh approach that avoids staircasing.
Fig. 13 displays the return loss versus frequency curves
obtained by using: 1) the nonorthogonal FDTD approach;

'2) the microwave computer-aided design package

TOUCHSTONE,; 3) a lossless T circuit model for the dis-
continuity; and 4) HP8510B network analyzer. We note
that below 6 GHz, which is believed to be the upper limit
for accurate measurements because of ‘the connectors
used, the agreement between the nonorthogonal FDTD
and the measured results is good.
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Fig. 13. Numerical results for three models versus experiment for the 45°
bend.

V. CoNCLUSION AND DISCUSSION

In this paper, we have reformulated the nonorthogonal
FDTD algorithm, using the covariant and contravariant
components of the electric and magnetic fields as the un-
known variables, to result in a more efficient time march-
ing procedure than that presented in [2]. Additionally, we
have performed the stability analyses of the nonorthog-
onal FDTD algorithm in two and three dimensions, and
derived an upper bound for the time step that guarantees
stable numerical solutions. Finally, the modified nonor-
thogonal FDTD algorithm has been applied to study sev-
eral waveguide discontinuities, viz., an H-plane wave-
guide junction, a circular waveguide with a circular iris,
a circular waveguide with a rectangular iris, and a 45°
microstrip bend. The computed results compared favor-
ably with previously available techniques and, therefore,
validated the present approach.
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